Introduction to Dynamic Milling

May 2016
Mastercam® 2017 Introduction to Dynamic Milling

Date: May 2016
Copyright © 2016 CNC Software, Inc.—All rights reserved.
Software: Mastercam 2017

TERMS OF USE
Use of this document is subject to the Mastercam End User License Agreement.
The Mastercam End User License Agreement can be found at:
http://www.mastercam.com/companyinfo/legal/LicenseAgreement.aspx

Be sure you have the latest information!
Information might have been changed or added since this document was published.
The latest version of this document is installed with Mastercam or can be obtained from your local Reseller.
A ReadMe file (ReadMe.pdf)—installed with each release—includes the latest information about Mastercam features and enhancements.
Contents

Introduction ... 5
 ▶ Tutorial Goals .. 5
 General Tutorial Requirements ... 6
 ▶ Dynamic Toolpaths .. 6
 ▶ Dynamic Toolpath Selection .. 10
 ▶ Dynamic Milling Parameters ... 12

1. The Dynamic Mill Toolpath ... 15
 ▶ Lesson Goals ... 15
 ▶ Exercise 1: Opening Mastercam ... 15
 ▶ Exercise 2: Set up the stock .. 16
 ▶ Exercise 3: Create the first Dynamic Mill toolpath 21
 ▶ Exercise 4: Create the second Dynamic Mill toolpath 34
 ▶ Exercise 5: Verify the toolpaths ... 44

2. The Face Toolpath .. 49
 ▶ Lesson Goals ... 49
 ▶ Exercise 1: Create the Face toolpath.. 49
 ▶ Exercise 2: Verify the toolpaths ... 54

3. The Dynamic Contour Toolpath .. 59
 ▶ Lesson Goals ... 59
 ▶ Exercise 1: Set up the stock .. 59
 ▶ Exercise 2: Create the first Dynamic Contour toolpath 61
 ▶ Exercise 3: Create the second Dynamic Contour toolpath 71
 ▶ Exercise 4: Analyze the toolpaths ... 78
 ▶ Exercise 5: Verify the toolpaths ... 79
4. The Peel Mill Toolpath ... 83
 ► Lesson Goals .. 83
 ► Exercise 1: Create the stock boundary .. 83
 ► Exercise 2: Create the first Peel Mill toolpath 85
 ► Exercise 3: Copy the Peel Mill toolpath 91
 ► Exercise 4: Re-chain the copied Peel Mill operations 92
 ► Exercise 5: Verify the toolpaths ... 96

5. The Dynamic OptiRough Toolpath... 99
 ► Lesson Goals .. 99
 ► Exercise 1: Set up the stock .. 99
 ► Exercise 2: Create the first toolpath ... 102
 ► Exercise 3: Create the stock model operation 110
 ► Exercise 4: Create the second toolpath 114
 ► Exercise 5: Verify the stock model and toolpaths 121

Conclusion .. 125
 ► Mastercam Resources ... 125
 ► Mastercam Documentation .. 126
 Contact Us .. 126
Introduction

Mastercam’s Dynamic Motion toolpaths deliver powerful benefits that help you get the most out of any machine.

These 2D and 3D high speed dynamic milling toolpaths utilize the entire flute length of their cutting tools to achieve great efficiency in milling. They are designed to maximize material removal while minimizing tool wear.

Additional benefits you gain by using high speed dynamic milling toolpaths include:

- Tool burial avoidance
- Minimum heat buildup
- Better chip evacuation
- Extended tool life

This tutorial introduces you to Mastercam’s intelligent, application-specific, 2D and 3D high-speed dynamic milling toolpaths.

Tutorial Goals

- Learn the benefits and uses of the Dynamic toolpath types
- Create basic Dynamic toolpaths
- Create stock models
- Learn to use other Mastercam toolpath utilities
Estimated time to complete this tutorial: 5 hours

General Tutorial Requirements
All Mastercam tutorials have the following general requirements:

- You must be comfortable using the Windows® operating system.
- The tutorials cannot be used with Mastercam Demo/Home Learning Edition (HLE). The Demo/HLE file format (emcam) is different from the Mastercam file format (mcam), and basic Mastercam functions, such as file conversions and posting, are unavailable.
- Each lesson in the tutorial builds on the mastery of preceding lesson’s skills. We recommend that you complete them in order.
- Additional files may accompany a tutorial. Unless the tutorial provides specific instructions on where to place these files, store them in a folder that can be accessed from the Mastercam workstation, either with the tutorial or in any location that you prefer.
- You will need an internet connection to view videos that are referenced in the tutorials. All videos can be found on our YouTube channel: www.youtube.com/user/MastercamTechDocs.
- All Mastercam tutorials require you to configure Mastercam to work in a default metric or English configuration. The tutorial provides instructions for loading the appropriate configuration file.

Dynamic Toolpaths
The following toolpaths use Dynamic Motion technology:

- Dynamic Contour
- Face
- Dynamic Mill
- Peel Mill
- Dynamic OptiRough

Each toolpath has various benefits that make them unique from each other and their standard counterparts.
Dynamic Contour
The Dynamic Contour toolpath creates a familiar contour operation using dynamic motion and specialized options found only in dynamic toolpaths. The dynamic motion prevents tool burial and binding in small radii corners. Additionally, you can specify how Mastercam machines any material left on the walls.

Face
The Face toolpath, when the Style is set to Dynamic, quickly cleans stock from the top of a part and creates an even surface for future operations. You can base the toolpath on either chained geometry or on the current stock model.

Dynamic Mill
The Dynamic Mill toolpath machines pockets, leftover material, standing bosses, or cores. By setting the Machining region strategy to Stay inside or From outside, you can create a pocket toolpath that utilizes dynamic motion or a facing operation that has island avoidance capabilities.
By selecting the Stay inside strategy, Dynamic Mill becomes a pocket toolpath that utilizes dynamic motion. You select a boundary, areas to avoid, and set tooling, parameters, entry method, and linking values to generate the toolpath. Material is removed from the inside to the outside in a highly efficient manner.

By selecting the From outside strategy, Dynamic Mill becomes a facing operation that has island avoidance capabilities. This movement creates a toolpath that is allowed to move outside the selected material and removes from the outside to the inside.

By enabling Rest Material on the Stock page, the Dynamic Mill toolpath removes material left by previous operations using dynamic motion. The Dynamic Mill operation calculates how much material to remove based on previous operations or

INTRODUCTION TO DYNAMIC MILLING
previous roughing tools. Only unmachined areas are processed for a Dynamic Mill operation.

Peel Mill
Peel Mill, with the Cutting strategy set to **Dynamic Peel**, allows for efficient milling between selected chains. It uses a dynamic style of motion with accelerated back feed moves when the tool is not engaged in material. For a single chain, you define the width of the cut. Otherwise, the width is defined by the area between two contours.

Dynamic OptiRough
The Dynamic OptiRough toolpath is currently the only 3D toolpath that uses Mastercam’s Dynamic Motion technology. It supports cutters capable of machining very large depths of cut. A single Dynamic OptiRough toolpath can cut material in two directions: on stepdowns (-Z) and stepups (+Z). This bi-directional cutting strategy removes the maximum amount of material with the minimum amount of stepdowns, significantly reducing cycle times.
Similar to Dynamic Mill, you can select *From outside* or *Stay inside* when machining. However, instead of selecting regions, you select drive surfaces, check surfaces, and containment boundaries.

Dynamic Toolpath Selection

The Dynamic toolpaths, especially the Dynamic Mill toolpath, require a unique way of understanding chain selection.

Dynamic Contour does not require a closed chain to calculate a toolpath. All geometry selected will be cut by the tool motion. Peel Mill requires at least one open chain and no closed chains.
Dynamic Mill allows you to have even more control over your chaining by allowing you to select multiple kinds of regions with one toolpath. The types of regions are listed below:

- **Machining regions**: Areas to be machined.
- **Avoidance regions**: Areas to be avoided during machining. Multiple avoidance regions can be selected.
- **Air regions**: Areas that contain no material and allows the tool to travel through it when machining.
- **Containment regions**: Areas where the tool cannot travel outside of.
- **Entry chain**: Select where the tool enters the part.

If the machining regions are open chains, you can extend the open chain to stock with the **Open chain extension to stock** options.

For more information, view Mastercam’s Help.
Dynamic OptiRough uses a different type of selection method compared to the other Dynamic toolpaths, as it is the only 3D Dynamic toolpath. When creating a Dynamic OptiRough toolpath, you have the following selection options:

- **Faces and Bodies**: Surfaces, solid faces, or solid bodies to be machined.
- **Check surfaces**: Surfaces, solid faces, or solid bodies that you want to avoid.
- **Containment Boundary**: One or more closed chains that limit tool motion.
- **Points**: Select the point near where the toolpath will start.

Dynamic Milling Parameters

Several parameter options separate the Dynamic operations from their standard counterparts. These parameters are on the Cut Parameters, Entry Motion, and Contour Wall page.

- Micro lifts
- Entry methods
- Entry feeds/speeds
- Contour wall
- Approach distance

Micro lift options allow the tool to rise above the floor of the part for the portion of the toolpath that is not removing material. Benefits of the micro lift include chip
clearing and avoiding excess tool heat. The feedrate is controllable for the back move as well.

Entry methods provide several ways to enter the material for a Dynamic Mill toolpath. Options range from a simple helix to a medial path with trochoidal motion to a selected open chain. Mastercam's Help contains detailed information on each of the methods available.

Use Entry feeds and speeds to avoid placing too much load on the tool upon entry. Set a short dwell interval after entry to allow the spindle to reach the necessary speed before beginning material removal.

Contour wall parameters provide input for remaining stock and previous tool information. The values entered help Mastercam to calculate the most efficient material removal strategy when machining part walls.
The Approach distance parameter allows you to add a specified absolute distance to the beginning of the toolpath’s first cut.

Dynamic toolpaths create highly efficient motion based on selected chains and surfaces. They are part of the 2D and 3D HST family of toolpaths with many similarities, but with the stated enhancements. The high speed toolpaths themselves are a leap ahead of the standard pocket, contour, and area roughing toolpaths.

Creating and reviewing the motion of dynamic toolpaths is the best way to learn about the benefits and uses. Continue on to Lesson 1 to learn about the Dynamic Mill toolpath.
LESSON 1
The Dynamic Mill Toolpath

The Dynamic Mill toolpath machines pockets, open pocket shapes and standing cores, or material left from previous operations.

In this lesson, you will create two Dynamic Mill toolpaths. The first one will clear material around the outside of the part. The second Dynamic Mill toolpath uses the previous one as a source operation for clearing out remaining material on the top of the part.

Lesson Goals

- Set up stock
- Create two Dynamic Mill toolpaths
- Preview region chains
- Verify the created toolpaths

Exercise 1: Opening Mastercam

1. Start Mastercam using your preferred method:
 - Double-click Mastercam’s desktop icon.
 - Or
 - Launch Mastercam from the Windows Start menu.
2. Select the default metric configuration file:
 - Click the File tab.
b Choose **Configuration** from Mastercam’s Backstage View to open the System Configuration dialog box.

c Choose ...\mcamxm.config <Metric> from the **Current** drop-down list.

d Click **OK**.

Exercise 2: Set up the stock

In this exercise, you will set up stock that will be used for the first toolpath.

1. Open the part file, `DynamicMill`, provided with this tutorial.
2. Save the part as `DynamicMill-xxx`, replacing `xxx` with your initials.
3. On the **Machine** tab, select **Mill, Default**.
4 Select the Levels Manager, located in the same area as the Toolpaths Manager. If it is not displayed, select Levels on the View tab to toggle the display or by pressing [Alt+Z].

Before creating the stock shape, you will first create a level to place the stock geometry on. This is a good practice for when you have part files that have thousands of lines, arcs, solids, or surfaces and you need to keep things separate from each other.

5 On the Levels Manager, select the Add a new level button.

A new level is added to the list and is then set as the main level.

6 Double-click in the Name column of the level you have just created and rename it to Stock geometry.

This level will now be used to place the geometry created by the stock setup.
7 Select **Stock setup** in the Toolpaths Manager.

The Machine Group Properties dialog box displays.

8 On the Stock Setup page, select **Bounding box**.

The Bounding Box function panel displays.
9 Select the entire part, as shown below:

10 Press [Enter] or click **End Selection** to accept the selection.
11 Set the following parameters:

- **Shape** to **Rectangular**. This shape is better suited for this part as opposed to using Cylindrical.
- **Z** to 28.6. Sets the size of the box in the Z axis.
- Under **Create Geometry**, select **Lines and arcs**. This will create lines and arcs based on the stock shape that can be used for many functions.

12 Click **OK** to accept and create the boundary, and return to the Machine Group Properties dialog box.
13 Click **OK** in the Machine Group Properties dialog box. The part now displays with the stock boundary and geometry.

You have now created the necessary stock and geometry to create the Dynamic Mill toolpaths.

14 Save your part.

Exercise 3: Create the first Dynamic Mill toolpath

You now create the first Dynamic Mill toolpath to machine the outside of the part.

1 Select **Dynamic Mill** from the 2D Gallery on the **Mill Toolpaths** contextual tab.

The Enter new NC name dialog box displays.
2 Click **OK**.

The Chain Options dialog box displays.

3 Click **Select** under Machining regions.

The Chaining dialog box displays. Machining regions are the regions that are going to be machined.

4 Select **C-plane** in the Chaining dialog box.

This option allows you to chain only entities that are parallel to the current construction plane and at the same Z depth as the first entity you chain.
5 Select the chain shown below as the machining region:

By changing the chaining selection to C-plane, you avoid selecting each line individually.

6 Click **OK** in the Chaining dialog box to return to the Chain Options dialog box.

7 Set the Machining region strategy to **From outside**.

From outside uses free-flowing motion to machine features such as standing bosses or cores. This is the strategy you want to clear the outside of the part.
8 Click Select under Avoidance regions.

The Chaining dialog box displays.

Avoidance regions are regions that you want to avoid during machining. In this case, you want to avoid the part itself and clear out the area between the stock boundary and the part. To do this, you will need to activate another level.

9 Select 3D in the Chaining dialog box.

This mode chains entities defined in the X, Y, and Z axes simultaneously.

10 Select the Levels Manager. Move the Chaining dialog box out of the way if necessary.

11 Click in the Visible column for the Part geometry level.

This will display the geometry we need to select.

The geometry is a silhouette of the part. This allows you to machine around the part and clear out the stock, but without cutting into the part.
12 Select the chain shown below as an avoidance region:

13 Click OK in the Chaining dialog box to accept the chain and return to the Chain Options dialog box.

Before you accept these chains in the Chain Options dialog box, you will first preview them to see if these are the chains you want.
14 Right-click in the graphics window and set the view to **Top (WCS)**.

15 In the Chain Options dialog box, click **Preview chains**.

Your part then displays as shown below:
Mastercam displays your material in the red and black crosshatch, the motion region as blue, and the tool containment as yellow. By using Preview chains, you can determine if that is what you want from the toolpath before even entering any parameters.

You can change these colors by selecting the Color button. These options are also available on the Toolpath Type page.

16 Once you are satisfied, right-click in the graphics window and select Isometric (WCS).

17 Click OK in the Chain Options dialog box to accept these chains.

The 2D High Speed Toolpath - Dynamic Mill dialog box displays.

18 Select the Tool page.

19 Click the Select library tool button.

The Tool Selection dialog box displays.
INTRODUCTION TO DYNAMIC MILLING

20 Select the **Filter** button. The Tool List Filter dialog box displays.

21 Select **None** to remove all filters.

22 Select the **Endmill3 Bull** filter. This ensures that you are only selecting Bull Endmill tools.

23 Click **OK** in the Tool List Filter dialog box.
24. In the Tool Selection dialog box, select the **END MILL WITH RADIUS - 20/R1.0** tool.

25. Click **OK** in the Tool Selection dialog box to add the tool to the toolpath.

26. Select the **Cut Parameters** page.

27. Set the following parameters:

 - **Direction of Cut**
 - **Approach Distance**
 - **First Pass Extension**
 - **First Pass Feed Reduction**
 - **Conventional Feed Rate**
 - **Stepover**
 - **Meliorate Path Radius**
 - **Start or End Cut**
 - **Cut Order Optimization**

 - **Stock to Leave on Walls**
 - **Stock to Leave on Flats**

 ![Cut Parameters settings](image-url)
Introduction to Dynamic Milling

- **Approach distance** to 9.5. This adds a specified distance to the beginning of the toolpath's first cut.
- **Stepover** to 50.0%. Sets the distance between cutting passes in the X and Y axes.
- **Min toolpath radius** to 2.5%. Mastercam uses this radius in combination with the Micro lift distance and Back feedrate parameters to calculate 3D arc moves between cutting passes.
- **% of tool diameter** to 500.0. Mastercam will not create a retract move if the distance from the end of one pass to the start of the next pass is less than this distance. The tool to stay down and move directly between the passes at the feed rate.
- **Micro lift distance** to 0.0. The distance the tool lifts off the part on back moves.
- **Back feedrate** to 0.0. Controls the speed of the backfeed movement of the tool.
- **Cut order optimization** to None. The toolpath to start at the most recently machined material when cutting.
- **Stock to leave on walls** to 0.5. Leaves a defined amount of stock on the vertical drive geometry.
- **Stock to leave on floors** to 0.0. Leaves a defined amount of stock on horizontal drive geometry.

Select the **Entry Motion** page.
29 Set the following parameters:

- **Helix radius** to 0.0. Sets the radius of the entry helix.
- **Z clearance** to 0.0. Sets an extra height used in the ramping motion down from a top profile.
- **Plunge angle** to 0.0. Sets the angle of descent for the entry move and determines the pitch.

This toolpath does not enter down into the stock, so you do not need to set any entry parameters.

30 Select the **Linking Parameters** page.
Set the following parameters:

- Deselect **Retract**. Sets the height that the tool moves up to before the next tool pass.
- Change **Top of stock** and **Depth** to **Absolute**. Mastercam measures absolute values from the origin 0,0,0.

Select the **Depth** button to return to the graphics window.

This determines the final machining depth and the lowest depth that the tool descends into the stock. In this case, the machining depth will be in the middle of the part because Dynamic Mill uses the entire tool to cut.
Select the chain shown below:

You will then automatically return to the 2D High Speed Toolpath - Dynamic Mill dialog box. Your Depth should now be set at -20.32.

Click OK in the 2D High Speed Toolpath - Dynamic Mill dialog box to generate your toolpath.
The toolpath will display as shown below:

Save your part.

Exercise 4: Create the second Dynamic Mill toolpath

You will now create a second Dynamic Mill toolpath using the Rest material option.

1. In the Toolpaths Manager with the Dynamic Mill toolpath selected, select **Toggle display on selected operations**.

 This will hide the display of the first toolpath and keep your graphics view clean while you create another toolpath.
2 Select **Dynamic Mill** from the 2D Gallery on the **Mill Toolpaths** contextual tab.

![Screenshot of the 2D Gallery and Mill Toolpaths contextual tab]

The Chain Options dialog box displays.

3 Click **Select** under Machining regions.

The Chaining dialog box displays.

![Screenshot of the Chaining dialog box]
4 Select the geometry shown below as the machining region. Use the C-Plane button to select the entire chain.

The selection is the same geometry used in the first Dynamic Mill toolpath.

5 Click OK in the Chaining dialog box to return to the Chain Options dialog box.

6 Ensure that the Machining region strategy is set to From outside.
7 Click **Select** under Avoidance regions.

 The Chaining dialog box displays.

8 Select the chain shown below as an avoidance region. Set the chaining to **3D**.

 ![Diagram showing a chain on a 3D model]

 You may need to rotate the part to select the chain.

9 Click **OK** in the Chaining dialog box to accept the chain and return to the Chain Options dialog box.

10 Click **OK** in the Chain Options dialog box to accept these chains.

 The 2D High Speed Toolpath - Dynamic Mill dialog box displays.
11 Select the Tool page.

12 In the Tool List, select the tool that was used for the previous Dynamic Mill toolpath, which is **END MILL WITH RADIUS - 20/R1.0**.

13 Select the Stock page.

14 Select the Rest material checkbox.
CREATE THE SECOND DYNAMIC MILL TOOLPATH

This enables the page and tells Mastercam to calculate the cutting passes based on the remaining stock.

15 Set the following parameters:

- **Set Compute remaining stock from** to **One other operation**. This calculates the remaining stock from a single operation.
- In the **Operation List**, select the **2D High Speed (2D Dynamic Mill)** toolpath.
- **Set Adjustments to remaining stock** to **Use as computed**. This option makes no adjustments to the stock model.

16 Select the **Cut Parameters** page.
The parameters are the same as the previous operation’s, so ensure that your toolpath matches the parameters shown below:

Select the **Entry Motion** page.
19 The parameters are also the same as the previous operation’s, so ensure that your toolpath matches the parameters shown below:

20 Select the Linking Parameters page.
21 Set the following parameters:

- **Feed plane** to **2.5**. Sets the height that the tool rapids to before changing to the plunge rate to enter the part.
- Ensure that **Feed plane** is set to **Incremental**.
- **Top of Stock** to **0.0**. Sets the top of the stock.
- Ensure that **Top of stock** and **Depth** are set to **Absolute**.

22 Click the **Depth** button to return to the graphics window.
23 Select the arc shown below:

You will need to rotate the part with your mouse to select it.

24 You will then automatically return to the 2D High Speed Toolpath - Dynamic Mill dialog box. Your Depth should be -10.16.

25 Click OK in the 2D High Speed Toolpath - Dynamic Mill dialog box to generate your toolpath.
INTRODUCTION TO DYNAMIC MILLING

26 The toolpath will display as shown below:

You will notice that the toolpath clears out the top of the part while avoiding the large feature that was selected as the avoidance region.

27 Save your part.

Exercise 5: Verify the toolpaths

You will now verify both Dynamic Mill toolpaths with Mastercam Simulator.

1 Select Toolpath Group-1 in the Toolpaths Manager.
This will select both Dynamic Mill toolpaths.
2 Select **Verify selected operations**. Mastercam Simulator displays.

Mastercam Simulator allows you to verify your toolpaths by using solid models to simulate part machining against a selected stock definition. The result Verify creates represents the surface finish, and shows collisions, if any exist. Use it identify and correct program errors before they reach the shop floor.

3 Right-click in the graphics view and select **Fit** and **Isometric** from the menu. Mastercam Simulator should match the image shown below.
4 View the Move List, which displays all pertinent information about the toolpaths being verified. The two Dynamic Mill toolpaths are able to machine the part in the time shown with the given parameters.

5 Press Play to preview the toolpath motion for both operations.
6 Once you are satisfied with your results, close Mastercam Simulator.

7 Save your part file.

The Dynamic Mill toolpaths easily and quickly remove all of the stock on the outside and prepares the part for any other necessary operations. In the next lesson, you will create a Face toolpath to further machine this part.
INTRODUCTION TO DYNAMIC MILLING
LESSON 2
The Face Toolpath

Face toolpaths quickly clean the stock from the top of a part and create an even surface for future operations. This toolpath can be based on chained geometry or on the current stock model.

For this lesson, you will create a Face toolpath on the top of the part from the Dynamic Mill lesson.

Lesson Goals
- Create a Face toolpath
- Preview the toolpath before it has been created
- Verify the created toolpath

Exercise 1: Create the Face toolpath

1. Open the part file, FaceMill, provided with this tutorial or use your part file created from the Dynamic Mill lesson.

2. If you are using your part from the previous lesson, select Toggle display on selected operations on the Toolpaths Manager.
 - This will hide the two Dynamic Mill toolpaths and keep the graphics view clean.

3. Save the part as FaceMill-xxx, replacing xxx with your initials.

4. Select Face from the 2D Gallery on the Mill Toolpaths contextual tab.

 ![The Chaining dialog box displays.](image)

The Chaining dialog box displays.
5 Select **Solids** to activate solid selection.

6 Activate **Face** selection.
 This allows you to select the face of a solid.

7 Select the solid face shown below:

8 Select **OK** in the Chaining dialog box.
 The 2D Toolpaths - Facing dialog box displays.

INTRODUCTION TO DYNAMIC MILLING
9 Select the **Tool** page.

10 Select the **END MILL WITH RADIUS - 20 / R 1.0**, which was used in the previous two Dynamic Mill toolpaths.

11 Select the **Cut Parameters** page.
12 Set the following parameters:

- **Style** to **Dynamic**. Creates a smooth controlled motion that cuts from the outside to the inside, maintaining a constant load on the tool with minimal entries and exits.
- **Stock to leave on floors** to **0.0**. Sets the amount of stock to leave on the floors during machining.
- **Max. stepover** to **50.0**. Sets the distance between adjacent passes in the toolpath.

13 Select the **Linking Parameters** page.

INTRODUCTION TO DYNAMIC MILLING
14 Set the following parameters:

- Deselect **Retract**. Sets the height that the tool moves up to before the next tool pass.
- Set **Feed plane** to 2.5. Sets the height that the tool rapids before changing to the plunge rate to enter the part.
- Set **Top of stock** to 0.2. Sets the height of the material in the Z axis.

Before clicking OK, you will first preview the toolpath. Previewing toolpaths allows you to view the toolpath before generating it so that you can make adjustments as necessary.

15 Select **Preview toolpath** on the 2D Toolpaths - Facing dialog box.
The toolpath will display on the part as shown below:

16 Click OK in the 2D Toolpaths - Facing dialog box to close and generate the toolpath.

17 Save your part.

Exercise 2: Verify the toolpaths

You now verify the two Dynamic Mill toolpaths created from the previous lesson and the Face toolpath together.

1 Select Toolpath Group-1 in the Toolpaths Manager.

This selects both Dynamic Mill toolpaths and the Facing toolpath.

INTRODUCTION TO DYNAMIC MILLING
2 Select **Verify selected operations**. Mastercam Simulator displays.

3 Right-click in the graphics view and select **Fit** and **Isometric** from the menu. Mastercam Simulator should match the image shown below.

4 Press **Play** to preview the toolpath motion for the toolpaths.

There will be material remaining on the top face of the part. That is to be expected.
5 View the Move List, which displays all pertinent information about the toolpaths being verified. The three Dynamic Mill toolpaths are able to machine the part in the time shown with the given parameters.

6 Use Verify’s **Color Loop** option to help distinguish between each toolpath.

Mastercam Simulator color-codes each toolpath so that you can distinguish where each toolpath cuts the part. The colors on the part correspond to those on the time bar.
7 Once you are satisfied with your results, close Mastercam Simulator.

8 Save your part file.

The Dynamic Mill toolpaths and the Face toolpath, you have quickly cleared the part to prepare it for finishing operations. In the next lesson, you create two Dynamic Contour toolpaths.
INTRODUCTION TO DYNAMIC MILLING
LESSON 3
The Dynamic Contour Toolpath

Mastercam's Dynamic Contour toolpath mills material off walls and supports closed or open chains. Compared to its standard counterpart, Dynamic Contour is much more efficient for cutting by using the entire flute of the tool, as with all dynamic motion toolpaths.

In this lesson, you create a Dynamic Contour toolpath to clear around the walls of the part.

Lesson Goals
- Create two Dynamic Contour toolpaths
- Analyze the toolpaths
- Verify the created toolpaths

Exercise 1: Set up the stock
1. Open the part file, DynamicContour, provided with this tutorial.
2. Save the part as DynamicContour-xxx, replacing xxx with your initials.
4 Select **Stock setup** from the Toolpaths Manager. The Machine Group Properties dialog box displays.

5 Select **Bounding box** on the Stock Setup page. The Bounding Box function panel displays.

6 Select the part and press [Enter] or select **End Selection**.
7 Set Z to 13.7. This adds a small amount of stock to the Z height of the stock boundary.

8 Click OK to create the boundary.

9 Click OK to accept the stock setup.

Exercise 2: Create the first Dynamic Contour toolpath

1 Select Dynamic Contour from the 2D Gallery on the Mill Toolpaths contextual tab.

The Enter new NC name dialog box displays.
2 Click **OK** in the Enter new NC Name dialog box. You would use this dialog box to change the name of the resulting NC file from the default name.

The Chain Options dialog box displays.

3 Click **Select** under Machining regions.

The Chaining dialog box displays.

4 Select **Solids** to activate solid chaining mode.

In the solid chaining mode, the chaining dialog box gives you options to manage the chaining of solid entities.

5 Confirm that **Loop** is selected.

This allows you to select a closed chain on a reference face.
6 Select the edge shown below. You may need to zoom in.

The Pick Reference face dialog box displays. This dialog box allows you to cycle through possible reference faces on a solid until you reach the one you want.

7 Ensure that the face shown below is selected:

Select **Other face** if necessary to cycle through the possible reference faces.

8 Click **OK** to return to the Chaining dialog box.
INTRODUCTION TO DYNAMIC MILLING

The chain will be displayed as shown below:

Reverse the chain if necessary.

9 Click OK in the Chaining dialog box to accept the chains and return to the Chain Options dialog box.

10 Click OK in the Chain Options dialog box.

The 2D High Speed Toolpath - Dynamic Contour dialog box displays.

11 Select the Tool page.

12 Click the Select library tool button.

The Tool Selection dialog box displays.
13 Click the Filter button. The Tool List Filter dialog box displays.

14 Set the Tool Type filter to None.

15 Select the Endmill1 Flat filter. This ensures that you are only selecting Flat Endmill tools.
16 Click OK in the Tool List Filter dialog box.
17 Select the FLAT END MILL - 4 tool.
18 Click OK in the Tool Selection dialog box.
19 Select the Cut Parameters page.
Set the following parameters:

- **Compensation direction** to Left. Offsets the tool to the right or left of the toolpath.
- **Approach distance** to 5.0. Adds a specified absolute distance to the beginning of the toolpath’s first cut.
- **First pass offset** to 1.0. Offsets the machining region to ensure the tool does not engage too much material during the first pass of the toolpath entering stock from the outside.
- **Stepover** to 15.0%. Sets the distance between cutting passes in the X and Y axes.
- **Min toolpath radius** to 5.0%. Sets the minimum toolpath radius for the operation.
- Set **Stock to leave on walls** and **Stock to leave on floors** to 0.0. You are not leaving any stock on the vertical and horizontal surfaces.
INTRODUCTION TO DYNAMIC MILLING

21 Select the Contour Wall page.

22 Set the following parameters:

- **Radius of tool that shaped the stock** to 8.0.
- **Min toolpath radius that shaped the stock** to 1.0.
- **Stock thickness** to 0.025.

Both parameters help define the shape of the stock removed by the toolpath. Mastercam calculates the stock to remove along the contour wall by using these parameters.

23 Select the Linking Parameters page.
Set the following parameters:

- **Retract**, **Top of stock**, and **Depth** to **Absolute**. This measures absolute values from the origin 0,0,0.
- **Retract** to 15.0. Sets the height that the tool moves up before the next tool pass.
- **Feed plane** to 3.0. Sets the height that the tool rapid to before changing to the plunge rate to enter the part.
- **Top of stock** to 13.7. Sets the height of the material in the Z axis.

Click the **Depth** button. You return to the graphics window.

Depth determines the final machining depth and the lowest depth that the tool descends into stock. You will select an edge for this toolpath.
26 Select the edge shown below:

You automatically return to the Linking Parameters page. Your **Depth** should now be **9.525**.

27 Click **OK** in the 2D High Speed Toolpath - Dynamic Contour dialog box to accept and generate your toolpath.

28 Your toolpath display as shown below:

29 Save your part.
Exercise 3: Create the second Dynamic Contour toolpath

1. Select Dynamic Contour from the 2D Gallery on the Mill Toolpaths contextual tab.

 The Chain Options dialog box displays.

2. Click Select under Machining regions.

 The Chaining dialog box displays.

3. Activate Solid selection if necessary.

4. Set the chaining to Linked edges.

 This allows you to select contiguous chaining of edges.
5 Zoom in using the mouse wheel to the edge of the part shown below.

6 Select the edge shown below:
7 The chain will display as shown below. Reverse the direction if needed, using the **Reverse** button on the Chaining dialog box.

8 Select along the edge until you end with the selected chain shown below.
In the Chaining dialog box, click **End chain**.
This ends the chain so that you can start a new one that is not linked to the previous chain.

Select the second partial chain shown below:

Click **OK** in the Chaining dialog box and return to the Chain Options dialog box.

Click **OK** in the Chain Options dialog box.
The 2D High Speed Toolpath - Dynamic Contour dialog box displays.

Select the **Tool** page.

Click the **Select library tool** button.
The Tool Selection dialog box displays.
15 Select the **FLAT END MILL - 8** tool.

![Tool Selection Dialog Box](image)

16 Click OK in the Tool Selection dialog box.

17 Select the **Cut Parameters** page.
18 Set the following parameters:

- **Approach distance** to 12.0.
- **First pass offset** to 3.0.

19 Select the **Contour Wall** page.

20 Set **Radius of tool that shaped the stock** to 10.0.
21 Select the Linking Parameters page.

22 Set the following parameters:

- **Retract** to 16.0.
- **Feed plane** to 3.0 and **Incremental**. Incremental values are relative to other parameters or chained geometry.
- **Top of stock** to 9.525.
- **Depth** to 0.0 and **Incremental**.

23 Click **OK** to generate the toolpath.
Exercise 4: Analyze the toolpaths

You now analyze the toolpath. Analyze Toolpath allows you to view toolpath properties, such as coordinates, direction, operation number, and other information by hovering over the toolpath.

1. Select **Analyze Toolpath** from the **Home** tab.
2 Hover over the first toolpath:

Analyze Toolpath informs you of the operation number, the feed move, spindle speed, G1 and the line length, and the coolant code. It also displays the start and end of the toolpath and of the section you are hovering over.

3 Continue hovering over areas of both toolpaths. Once you are satisfied, press [Esc] or Cancel out of the function.

Exercise 5: Verify the toolpaths

You will now verify both toolpaths.

1 Select Toolpath Group-1 in the Toolpaths Manager.

This selects both toolpaths so that they can be verified at the same time.
2 Select **Verify selected operations**. Mastercam Simulator displays.

3 Right-click in the graphics view and select **Fit** and **Isometric**, if necessary, so that the display matches the image below:
4 View the Move List, which displays all pertinent information about the toolpaths being verified.

By using two Dynamic Contour toolpaths, the total machining time is around 1 minute.

5 Press Play to preview the toolpath motion for both operations.

6 Once you are satisfied with your results, close Mastercam Simulator.

7 Save your part file.

In the next lesson you will create three Peel Mill toolpaths.
INTRODUCTION TO DYNAMIC MILLING
LESSON 4
The Peel Mill Toolpath

The Peel Mill toolpath, with the Cutting strategy set to Dynamic Peel, allows for efficient milling between selected chains. It uses a dynamic style of motion with accelerated back feed moves when the tool is not engaged in material.

In this lesson you will create one Peel Mill toolpath, copy it twice, and make edits.

Lesson Goals
- Create a Peel Mill toolpath
- Copy and paste the toolpath
- Make edits to the copied toolpaths
- Verify the created toolpaths

Exercise 1: Create the stock boundary
1. Open the part file, PeelMill, provided with this tutorial.
2. Save the part as PeelMill-xxx, replacing xxx with your initials.
4 Select **Stock setup** from the Toolpaths Manager.

The Machine Group Properties dialog box displays.

5 Select **Bounding box**.

The Bounding Box function panel displays.

6 Select the part and press [Enter] or click **End Selection**.
CREATE THE FIRST PEEL MILL TOOLPATH

For this part, no geometry needs to be created. The bounding box will be accepted as it is.

7 Click OK to create the boundary.

8 Click OK to accept the stock setup.

Exercise 2: Create the first Peel Mill toolpath

1 Select **Peel Mill** from the 2D Gallery on the **Mill Toolpaths** contextual tab.

![Image of 2D Gallery with Peel Mill highlighted]

The Enter new NC name dialog box displays.

2 Click OK in the Enter new NC name dialog box.

The Chaining dialog box displays.
3 Activate **Solids** selection from the Chaining dialog box.

4 Select **Edge** if it has not already been selected. This allows you to select the solid edges of a model.

5 Select **Translucency** on the **View** tab.

This toggles the translucency of the current model and will help with selection for this first toolpath.
6. Select the two edges shown below. Use the Reverse button if necessary.

7. Toggle Translucency to off.

8. Click OK in the Chaining dialog box.
 The 2D High Speed Toolpath - Peel Mill dialog box displays.

9. Select the Tool page.
10 Click **Select library tool**.

The Tool Selection dialog box displays.

11 Click **Filter**.

The Tool List Filter dialog box displays.

12 Ensure that tools are filtered to **Endmill1 Flat**.

13 Click **OK** in the Tool List Filter dialog box to accept the filter and return to the Tool Selection dialog box.

14 Select the **FLAT END MILL - 12** tool.
15. Click **OK** to add that tool and exit the Tool Selection dialog box.

16. Select the **Cut Parameters** page.

17. Set the following parameters:
 - **Stepover** to **20.0%**.
 - **Min toolpath radius** to **5.0%**.
 - Select **Extend Exit** and set **Additional exit distance** to **3.0**. This adjusts the final tool engagement with the material.
18 Select the **Linking Parameters** page.

19 Set the following parameters:
- Set **Retract** to **40.0**.
- Set **Feed plane** to **40.0**.

20 Click **Top of stock**.
This returns you to the graphics window to select the top of the stock of the part.

21 Select the point shown below:

You automatically return to the Linking Parameters page. **Top of stock** will be set at **38.1**.

INTRODUCTION TO DYNAMIC MILLING
22 Click **OK** in the 2D High Speed Toolpaths - Peel Mill dialog box to generate the toolpath.

The toolpath will display as shown below:

![Toolpath Image]

23 Save your file.

Exercise 3: Copy the Peel Mill toolpath

In this exercise, you copy the Peel Mill operation twice in the Toolpaths Manager.

1 Right-click on the 2D High Speed (2D Dynamic Peel Mill) toolpath and drag and drop it below the red insert arrow.
2 Select **Copy after** from the right-click menu that displays.

The toolpath is copied below the original. There are now two Peel Mill toolpaths in the Toolpaths Manager.

3 Copy the toolpath once more. You will now have three Peel Mill toolpaths in the Toolpaths Manager.

Copying and pasting toolpaths is helpful when you have to do similar cuts on the same part. In the case of these toolpaths, you will have to re-chain the geometry.

4 Save your file.

Exercise 4: Re-chain the copied Peel Mill operations

In this exercise, you will re-chain the geometry for the second Peel Mill toolpath.
1. Select **Geometry** under the second Peel Mill toolpath.
 The Chain Manager dialog box displays.

2. Right-click in the Chain Manager dialog box and select **Rechain all**.
 The Chaining dialog box displays.
3 Select the chains shown below. Ensure that the chains are both going in the same direction. You may need to rotate the part to select them.

By doing this, you only need to select the chains for the toolpath without having to go through creating the entire toolpath again.

4 Click OK in the Chaining dialog box and return to the Chain Manager dialog box.

5 Click OK in the Chain Manager dialog box.

Before regenerating the toolpath, you will re-chain the third operation.

6 Select Geometry under the third Peel Mill toolpath.

The Chain Manager dialog box displays.

7 Right-click in the Chain Manager dialog box and select Rechain all.

The Chaining dialog box displays.
8. Select the chains shown below. Ensure that the chains are both going in the same direction.

9. Click **OK** in the Chaining dialog box and return to the Chain Manager dialog box.

10. Click **OK** in the Chain Manager dialog box.

11. Select **Regenerate all dirty operations** in the Toolpaths Manager.

The second and third Peel Mill toolpaths regenerate using the newly selected chains.
12 All three Peel Mill toolpaths will display as shown below:

![Image of Peel Mill toolpaths](image)

13 Save your file.

Exercise 5: Verify the toolpaths

Now you verify all three Peel Mill operations together.

1 Select **Toolpath Group-1** in the Toolpaths Manager to select all of the toolpaths.

2 Select **Verify selected operations**. Mastercam Simulator displays.
3 Right-click in the graphics view and select **Fit** and **Isometric**, if necessary, so that the display matches the image below:

![Image of graphics view with toolpaths](image)

4 View the Move List to view the total runtime of the toolpaths.

![Image of Move List showing total runtime](image)
5 Press Play to preview the toolpath motion for the operations.

6 Once you are satisfied with your results, close Mastercam Simulator.

7 Save your part file.

When creating similar toolpaths, copying and pasting save time. In the next lesson you create two Dynamic OptiRough operations and a stock model operation.
LESSON 5
The Dynamic OptiRough Toolpath

The 3D surface high speed Dynamic OptiRough toolpath uses an aggressive, fast, intelligent roughing algorithm based on Mastercam’s 2D high speed dynamic milling motion.

In this lesson, you will create two Dynamic OptiRough toolpaths using different cutting strategies and a stock model operation in order to rough out the part.

Lesson Goals
- Set up the stock
- Create two Dynamic OptiRough toolpaths
- Create a stock model operation

Exercise 1: Set up the stock

In this exercise, you will create the stock model that will be used for the first Dynamic OptiRough toolpath.

1. Open the part file, DynamicOptiRough, provided with this tutorial.
2. Save the part as DynamicOptiRough-xxx, replacing xxx with your initials.
4. Select the Levels Manager, located in the same area as the Toolpaths Manager. If it is not displayed, select Levels from the View tab to toggle the display.
INTRODUCTION TO DYNAMIC MILLING

Before creating the stock shape, you will first create a level to place the stock geometry on. This is a good practice for when you have part files that have thousands of lines, arcs, solids, or surfaces and you need to keep things separate from each other.

5 On the Levels Manager, select the Add a new level button.
A new level is added to the list and is then set as the main level.

6 Double-click in the Name column of the level you have just created and rename it to Stock geometry.
This level will now be used to place the geometry created by the stock setup.

7 Select Stock setup from the Toolpaths Manager.
The Machine Group Properties dialog box displays.

8 Select Bounding box.
The Bounding Box function panel displays.
9. Window select all entities to create a bounding box around the entire part:

11. Set the Shape to Cylindrical.

12. In the Cylindrical Settings group, set the following parameters:
 - Set the Axis to Z.
 - Set the Height to 102.00. This will add a small amount of stock at the top of the part.

13. In the Create Geometry group, select the Lines and arcs checkbox.

 This will create lines and arcs based on the stock boundary. You will then use this geometry to contain the first Dynamic OptiRough toolpath.
14 Click OK to create the boundary.

15 Click OK to in the Machine Group Properties dialog box to accept the stock setup.

The stock model displays as a dashed outline in red. The geometry that was created with the Bounding Box also displays.

Exercise 2: Create the first toolpath

In this exercise, you create the first Dynamic OptiRough toolpath that uses this stock boundary.

1. Select OptiRough from the 3D Gallery on the Mill Toolpaths contextual tab.

The Enter new NC name dialog box displays.
2 Click **OK** in the Enter new NC name dialog box.
You then select the drive surfaces for the toolpath.

3 Select the part body as the drive surfaces, as shown below. This includes the blue caps.

4 Press **Enter** or click **End Selection** to accept these surfaces.
The Toolpath/surface selection dialog box displays.
5 Click the **Select** button in the Containment group.

This returns you to the graphics window to select one or more closed chains of curves to limit the tool motion.

6 In the graphics window, select the geometry at the top of the stock boundary. You will need to change back to **Wireframe** mode in the Chaining dialog box.

7 Click **OK** to return to the Toolpath/surface selection dialog box.

8 Click **OK** in the Toolpath/surface selection dialog box.
The Surface High Speed Toolpaths - Dynamic OptiRough dialog box displays.

9 On the Toolpath Type page, ensure that the Containment boundary is set to **From Outside**.

From Outside sets the toolpath to machine from outside the containment boundary moving in. This strategy is best used for machining cores.

10 Select the **Tool** page.

11 Click the **Select library tool** button.

The Tool Selection dialog box displays.

12 Select the **Filter** button.

The Tool List Filter dialog box displays.
13 Set the Tool Type filter to **None**.

14 Select the **Endmill3 Bull** filter. This ensures that you are only selecting Bull Endmill tools.

15 Click **OK** in the Tool List Filter dialog box.

You return to the Tool Selection dialog box.

16 In the Tool Selection dialog box, select the **END MILL WITH RADIUS - 20/R2.0** tool.

17 Click **OK** in the Tool Selection dialog box to add the tool to the toolpath.

18 Select the **Cut Parameters** page.
Set the following parameters:

- **Optimize stepups** to *By pocket*. Mastercam first machines all stepdowns, moving from pocket to pocket. After all stepdowns on a z-level are machined to completion, Mastercam machines the stepups by next closest, in the safest cut order.
- **Stepover** to 30.0%. Sets the distance between cutting passes in the X and Y axes.
- **Stepdown** to 150.0%. Determines the Z spacing between adjacent cutting passes.
- Select the **Stepup** checkbox and enter 15.0. Mastercam calculates and adds step up cutting passes (+Z) to the toolpath.
- **Minimum toolpath radius** to 10.0. Sets the minimum toolpath radius to create in the operation.
- **Micro lift distance** to 0.0.
- **Back feed rate** to 100.0. Controls the speed of the backfeed movement of the tool.
- **% of tool diameter** to 10000.0.
20 Select the Transitions page.

21 Set the following parameters:

- Set **Helix radius** to 9.0. Sets the radius of the entry helix.
- Set **Skip pockets smaller than** to 13.2. Specifies a minimum pocket size that Mastercam will create a cutting pass for. This helps with problems where Mastercam thinks that a pocket is large enough to accommodate the tool, but the entry move is so compressed the tool is effectively plunging into the part.

22 Select the Linking Parameters page.
Set the following parameters:

- Set the **Retract Method** drop-down to **Minimum Distance**. Creates high speed loops into and out of each retract move.
- Check **Output feed move** and enter **12500.0**. Outputs the rapid move between passes as a feed rate move instead of a rapid move. This helps when the tool needs to make many irregular moves per pass to jump between different areas of the part.
- Set **Ramp height** to **1.0**. Sets the height of the helix when moving into a new region.

24 Click **OK** to close the Surface High Speed Toolpaths - Dynamic OptiRough dialog box and generate your toolpath.
Your toolpath should display as follows:

Save your part file.

Exercise 3: Create the stock model operation

You now create a stock model operation that uses the previous operation as its source. This stock model will be used in the second Dynamic OptiRough toolpath to clear out any remaining stock.

1. On the Toolpaths Manager, select **Only display selected toolpaths**.

 This will only display the toolpath you have selected. It will also clean up the graphics view when making modifications to the part or creating another toolpath.
CREATE THE STOCK MODEL OPERATION 111

2 Select **Stock Model** on the **Mill Toolpaths** contextual tab.

The Stock model dialog box displays.

3 Name the stock operation **OP1 Stock**.

 Naming your stock model based on which operation it is using is helpful, especially when you have a part with multiple stock model operations.

4 Set **Color** to **128**.

 This will help differentiate the stock model from the solid or surface model.

5 Select the **Bounding box** button.
The Bounding box function panel displays.

6 Select the part body, including the caps. Do not select the stock geometry made creating the previous stock model. If necessary, turn off the Stock geometry level.

7 Press [Enter] or click End Selection to accept the selection. The Bounding Box function panel displays.

8 Set the following parameters:
 - Shape to Cylindrical
 - Height to 102.00.
 - Axis to Z.

9 Click OK to accept the stock model and return to the Stock model dialog box.

INTRODUCTION TO DYNAMIC MILLING
10 Select the **Source Operations** page.

11 Select the **Surface High Speed (Dynamic OptiRough)** toolpath as the source operation.

The stock model is generated by running the selected operation against the parameters on the Stock Definition page.

12 Click **OK** to create the stock model operation.

13 Your stock model displays as shown below:
Exercise 4: Create the second toolpath
You now create the second Dynamic OptiRough toolpath that uses the stock model you created in the previous exercise.

1. Select **Toolpath Group-1** in the Toolpaths Manager.

2. Select **Toggle display on selected operations**. This hides all selected toolpaths to keep the graphics window clean.

3. Select **OptiRough** from the 3D Gallery on the **Mill Toolpaths** contextual tab.

You then select the drive surfaces for the toolpath.
4 Select all but the blue caps as the drive surfaces shown below.

5 Press [Enter] or click End Selection to accept these surfaces. The Toolpath/surface selection dialog box displays.

6 Click the Select button in the Containment group. This returns you to the graphics window to select one or more closed chains of curves to limit the tool motion.
7 In the graphics window, select the geometry at the top of the stock boundary.

8 Click OK to return to the Toolpath/surface selection dialog box.

9 Click OK in the Toolpath/surface selection dialog box. The Surface High Speed Toolpaths - Dynamic OptiRough dialog box displays.

10 Select the Tool page.

11 Click the Select library tool button.
12 In the Tool Selection dialog box, select the END MILL WITH RADIUS - 10/R1.0 tool.

13 Click OK to add the tool to the toolpath.

14 Select the Stock page.

15 Select the Rest material checkbox.

When you enable this page, Mastercam calculates the cutting passes based on the remaining stock.
Set the following parameters:

- Set **Compute remaining stock from** to **One other operation**.
- In the **Operation List**, select **Stock Model - OP1 Stock**.
- Set **Adjustments to remaining stock** to **Ignore small cusps**.
- Set **Distance** to **1.0**. This option is used in conjunction with **Ignore small cusps**. Mastercam will output cuts that engage large amounts of material.

Select the **Cut Parameters** page.
18 Set the following parameters:

- **Optimize stepups** to **Next closest**. Mastercam moves to the closest cut from its last position on the previous cut.
- **Stepover** to **30.0%**.
- **Stepdown** to **150.0%**.
- **Stepup** to **30.0%**.
- **Minimum toolpath radius** to **10.0%**.
- **Motion > Gap size, retract** to **When avoiding a boundary**. Adds retracts to avoid intersecting boundaries (a gouge boundary, or a boundary of material yet to be milled).

19 Select the **Tool containment** page.

This page controls the tool’s position around the boundary of your part.
Set the following parameters:

- Set **Compensate to** to Outside. Sets the outer edge of the tool to be bound to the containment boundary.
- Set **Offset distance** to **10.0**. This option adjusts the inside or outside tool containment boundary.

Select the **Transitions** page.

Set the **Helix radius** to **5.5**.
23 Click **OK** to create and generate the Dynamic OptiRough toolpath.

24 Your toolpath will display as shown below:

25 Save your part file.

Exercise 5: Verify the stock model and toolpaths

In this exercise, you use Mastercam Simulator to verify your toolpaths and stock model. Verifying your toolpaths allows you to use solid models to simulate part machining against the selected stock definition.
1. Select **Toolpath Group-1** in the Toolpaths Manager.

2. Select **Verify selected operations** in the Toolpaths Manager. Mastercam Simulator displays.
3 If necessary, right-click in the graphics window and change the view to Isometric and Fit the part to the screen so that it matches the image shown below.

4 Click the Play button or press [R] to verify the toolpaths.
5 View the Move List to view the total runtime of the toolpaths.

6 Once you are satisfied with the verification, close Mastercam Simulator.

7 Save your part.
Conclusion

Congratulations! You have completed the *Introduction to Dynamic Milling* tutorial. Now that you have mastered the skills in this tutorial, explore Mastercam’s other features and functions.

You may be interested in other tutorials that we offer. The Mastercam tutorial series is in continual development, and we will add modules as we complete them. Visit our website, or select Help, Tutorials from the File tab to see the latest publications.

Mastercam Resources

Enhance your Mastercam experience by using the following resources:

- **Mastercam Help**—Access Mastercam Help by selecting Help, Contents from Mastercam’s File tab or by pressing [Alt+H] on your keyboard. Also, most dialog boxes, function panels, and ribbon bars feature a Help button that opens Mastercam Help directly to related information.

- **Mastercam Reseller**—Your local Mastercam Reseller can help with most questions about Mastercam.

- **Technical Support**—CNC Software’s Technical Support department (860-875-5006 or support@mastercam.com) is open Monday through Friday from 8:00 a.m. to 5:30 p.m. USA Eastern Standard Time.

- **Mastercam Tutorials**—CNC offers a series of tutorials to help registered users become familiar with basic Mastercam features and functions. The Mastercam tutorial series is in continual development, with new modules added as we complete them. Visit our website, or select Tutorials from the Help menu to see the latest publications.

- **Mastercam University**—CNC Software sponsors Mastercam University, an affordable online learning platform that gives you 24/7 access to Mastercam training materials. Take advantage of more than 180 videos to master your skills at your own pace and help prepare yourself for Mastercam Certification. For more information on Mastercam University, please contact your Authorized Mastercam Reseller, visit www.mastercamu.com, or email training@mastercam.com.

- **Online communities**—You can find a wealth of information, including many videos, at www.mastercam.com. For tech tips and the latest Mastercam news, follow us on Facebook (www.facebook.com/mastercam), Twitter (www.twitter.com/mastercam), or Google+ (plus.google.com/+mastercam).
Visit our YouTube channel to see Mastercam in action (www.youtube.com/user/MastercamCadCam)! Registered users can search for information or ask questions on the Mastercam Web forum, forum.mastercam.com, or use the knowledge base at kb.mastercam.com.

To register, select Community, Link Account from the File tab, and follow the instructions.

Mastercam Documentation

Mastercam installs the following documents in the \Documentation folder of your Mastercam installation:

- What’s New in Mastercam 2017
- Mastercam 2017 Installation Guide
- Mastercam 2017 Administrator Guide
- Mastercam 2017 Transition Guide
- Mastercam 2017 Quick Reference Card
- Mastercam 2017 ReadMe

Contact Us

For questions about this or other Mastercam documentation, contact the Technical Documentation department by email at techdocs@mastercam.com.
Attention! Updates may be available.
Go to Mastercam.com/Support for the latest downloads.